Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Da-Bin Qin,* Lin-Hai Jin, Shao-Jin Gu and Huan-Xia zhang

School of Chmistry and Chemical Industry, Chinaeast Normal University, Nanchong 637000, Sichuan Province, People's Republic of China

Correspondence e-mail:
qindabin2005@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$
Disorder in solvent or counterion
R factor $=0.054$
$w R$ factor $=0.179$
Data-to-parameter ratio $=11.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3(5,10)-Anthracena-7(1,3)-benzena-1,5(1,3)-diimidazolacyclooctaphane-1,3-diium bis(hexafluorophosphate) acetonitrile trisolvate

In the title compound, $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{4}{ }^{2+} \cdot 2 \mathrm{PF}_{6}{ }^{-} \cdot 3 \mathrm{CH}_{3} \mathrm{CN}$, the two imidazolium rings in the cation adopt a syn configuration with respect to the anthracene group. The crystal packing shows weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds between the cations and acetonitrile molecules.

Comment

In recent years, rigid cyclic N-heterocyclic carbene (NHC) precursors have attracted considerable attention, due to their diverse coordination capabilities to transition metals and main-group elements, along with an increasing use in organometallic chemistry and homogeneous catalysis (Herrmann \& Kocher, 1997; Bourissou et al., 2000; Barnard et al., 2004; Lee et al., 2004; Yoon et al., 2004; Baker et al., 2004, 2006). We present here the title compound, (I), which is a new macrocyclic NHC precursor.

(I)

The asymmetric unit of (I) contains one $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{4}{ }^{2+}$ cation, two $\mathrm{PF}_{6}{ }^{-}$anions and three acetonitrile solvent molecules. The cation cosists of the two imidiazolium rings ($\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 1-\mathrm{C} 3, A$, and $\mathrm{N} 3 / \mathrm{N} 4 / \mathrm{C} 12-\mathrm{C} 14, B)$, a benzene ring ($\mathrm{C} 5-\mathrm{C} 10, C$) and an anthracene fragment ($\mathrm{C} 16-\mathrm{C} 29, D$), which make the following dihedral angles: $A / C=87.1(1)^{\circ}, B / C=83.9(1)^{\circ}, B / D=$ $73.7(1)^{\circ}$ and $A / D=75.43(1)^{\circ}$. The two imidazolium rings adopt a syn configuration with respect to the anthracene unit.

In the crystal structure, weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 1) link the cations and acetonitrile solvent molecules.

Received 31 July 2006
Accepted 18 August 2006

Experimental

The title compound was prepared by the reaction of bis(imidazol-1-yl)-m-xylene with 9,10-bis(chloromethyl)anthracene in dioxane and anion exchange with $\mathrm{NH}_{4} \mathrm{PF}_{6}$ in methanol. The residue was purified by silica-gel flash chromatography using dichloromethane-methanol (10:1) as eluent to give the title compound and another $2+2$ cycloaddition compound. Yellow single crystals suitable for X-ray diffraction were obtained by recrystallization from diethyl etheracetonitrile (1:1).

Crystal data

$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{4}{ }^{2+} \cdot 2 \mathrm{PF}_{6}{ }^{-} \cdot 3 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$	$Z=4$
$M_{r}=855.65$	$D_{x}=1.415 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation
$a=8.643(2) \AA$	$\mu=0.20 \mathrm{~mm}^{-1}$
$b=22.391(6) \AA$	$T=294(2) \mathrm{K}$
$c=20.983(5) \AA$	Block, yellow
$\beta=98.506(5)^{\circ}$	$0.40 \times 0.22 \times 0.18 \mathrm{~mm}$
$V=4015.9(18) \AA^{3}$	

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.949, T_{\text {max }}=0.965$

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0813 P)^{2}\right. \\
\quad+0.3116 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.005 \\
\Delta \rho_{\max }=0.26 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}
\end{gathered}
$$

20280 measured reflections 7086 independent reflections 3197 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.058$ $\theta_{\text {max }}=25.0^{\circ}$
$w R\left(F^{2}\right)=0.179$
$S=1.02$
7086 reflections
627 parameters
H -atom parameters constrained

Table 1
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C1-H1 $\cdots \mathrm{N} 5$	0.93	2.52	$3.407(3)$	160
C14-H14 \cdots N5	0.93	2.47	$3.387(3)$	167

Each hexafluorophosphate anion is disordered over two different orientations, with refined occupancies of 0.3571 (3) and 0.6429 (3) for the first anion, and 0.3422 (4) and 0.6578 (4) for the second anion. The $\mathrm{P}-\mathrm{F}$ distances were restrained to 1.56 (4) $\AA . \mathrm{H}$ atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.96 \AA$ and $\mathrm{N}-\mathrm{H}$ $=0.85 \AA$, and included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$.

Figure 1
View of the cation of the title compound with displacement ellipsoids drawn at the 40% probability level. H atoms have been omitted for clarity.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The authors thank the Centre for Test and Analysis, Nankai University, for analytical support.

References

Baker, M. V., Barnard, P. J., Berners-Price, S. J., Brayshaw, S. K., Hickey, J. L., Skelton, B. W. \& White, A. H. (2006). J. Chem. Soc. Dalton Trans. pp. 37083715.

Baker, M. V., Bosnich, M. J., Brown, D. H., Byrne, L. T., Hesler, V. J., Skelton, B. W., White, A. H. \& Williams, C. C. (2004). J. Org. Chem. 69, 7640-7652.

Barnard, P. J., Baker, M. V., Berners-Price, S J., Skelton, B. W. \& White, A. H. (2004). Dalton Trans. pp. 1038-1047.

Bourissou, D., Guerret, F. P. \& Bertrand, G. (2000). Chem. Rev. 100, 39-91. Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1998). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Herrmann, W. A. \& Kocher, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 21622187.

Lee, H. M., Lu, C. Y., Chen, C. Y., Chen, L. W. \& Chiu, P. L. (2004). Tetrahedron, 60, 5807-5825.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yoon, J., Kim, S. K., Singh, N. J., Lee, J. W., Yang, Y. J., Chellappan, K. \& Kim, K. S. (2004). J. Org. Chem. 69, 581-583.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

